久久久久综合国产精品二区_黄色三级毛片精品国产av_猛鬼三温暖在线观看免费国语版_揭秘知花凛AV在线播放_厨房征服丰满熟妇_欧美四级在线观看免费_香蕉视频网站导航_99久久全国免费观看_日韩国产综合无码一区二区_中文人妻熟妇乱又伦精品

Hello, welcome to Jinan Huawei CNC machinery CO., Ltd

Advanced Search:


Contact us


contact us

Contacts:JI Manager

Unified hotline:400-6587-688

Tel: (86)531-88276988

Fax:(86)531-88276988

Phone number:0086-15269186223

Address: No.18 Tonghua Road ,

Licheng district , Jinan city, 
shandong province, China



technical support

Method for handling radial runout of CNC milling machine tools

Source: Time:2019-02-22 00:08:15 views:

In the cutting process of CNC milling machines, there are many reasons for machining errors, and the error caused by tool radial runout is one of the important factors. It directly affects the minimum shape error that the machine tool can achieve under ideal machining conditions and the geometric accuracy of the machined surface. In actual cutting, the radial runout of the tool affects the machining accuracy, surface roughness, uneven tool wear, and cutting process characteristics of multi tooth tools. The larger the radial runout of the tool, the more unstable the machining state of the tool, and the more it affects the machining effect.

2、 Reasons for radial jumping

Manufacturing errors and clamping errors of cutting tools and spindle components can cause drift and eccentricity between the tool axis and the ideal rotation axis of the spindle, as well as radial runout of CNC milling machine tools during machining due to specific processing techniques and fixtures.

1. The impact of radial runout on the spindle itself

The main reasons for the radial runout error of the spindle include the coaxiality error of each journal of the spindle, various errors of the bearings themselves, coaxiality error between bearings, spindle deflection, etc. Their impact on the radial rotation accuracy of the spindle varies with different machining methods. These factors are formed during the manufacturing and assembly processes of machine tools, and as operators of machine tools, it is difficult to avoid their impact.

2. The impact of inconsistent tool center and spindle rotation center

During the installation of the tool onto the spindle, if the center of the tool is not aligned with the rotation center of the spindle, it will inevitably cause radial runout of the tool. The specific influencing factors include the fit between the tool and the chuck, whether the cutting method is correct, and the quality of the tool itself.

3. The impact of specific processing techniques

The radial runout generated by cutting tools during machining is mainly due to the increased radial cutting force that exacerbates the radial runout. Radial cutting force is the component of the total cutting force in the radial direction. It will cause bending deformation of the workpiece and generate vibration during processing, which is the main component affecting the quality of workpiece processing. It is mainly influenced by factors such as cutting parameters, tool and workpiece materials, tool geometry angle, lubrication method, and machining method.

3、 Methods to reduce radial runout

The main reason for the radial runout of cutting tools during machining is that the radial cutting force intensifies the radial runout. So, reducing radial cutting force is an important principle for reducing radial runout. The following methods can be used to reduce radial runout:

1. Use sharp knives

Choose a larger tool rake angle to make the tool sharper and reduce cutting force and vibration. Choosing a larger tool rake angle can reduce the friction between the main rake face of the tool and the elastic recovery layer on the transition surface of the workpiece, thereby reducing vibration. However, the front and back corners of the tool cannot be selected too large, otherwise it will result in insufficient strength and heat dissipation area of the tool. So, it is necessary to choose different tool front and back angles based on specific situations. For rough machining, a smaller angle can be used, but for precision machining, to reduce the radial runout of the tool, a larger angle should be used to make the tool sharper.

2. Use high-strength cutting tools

There are two main ways to increase the strength of the cutting tool. One is to increase the diameter of the tool holder. Under the same radial cutting force, increasing the diameter of the tool holder by 20% can reduce the radial runout of the tool by 50%. The second is to reduce the extension length of the tool. The larger the extension length of the tool, the greater the deformation of the tool during processing. During processing, it is constantly changing, and the radial runout of the tool will also change accordingly, resulting in an uneven surface of the workpiece. Similarly, reducing the extension length of the tool by 20% will also reduce the radial runout of the tool by 50%.

3. The front cutting surface of the tool should be smooth

During machining, a smooth rake surface can reduce the friction of chips on the tool and also decrease the cutting force on the tool, thereby reducing the radial runout of the tool.

4. Cleaning of spindle taper hole and clamp head

The spindle taper hole and chuck should be clean, without dust or debris generated during workpiece processing. When selecting machining tools, try to use tools with shorter extension lengths. When cutting, the force should be reasonable and even, not too large or too small.

5. The selection of knife quantity should be reasonable

When the cutting amount is too small, there will be a phenomenon of machining slippage, which leads to continuous changes in the radial jumping amount of the tool during machining, making the machined surface uneven. When the cutting amount is too large, the cutting force will increase, resulting in large deformation of the tool. Increasing the radial jumping amount of the tool during machining will also make the machined surface uneven.

6. Use reverse milling during precision machining

Due to the changing position of the gap between the lead screw and nut during forward milling, it can cause uneven feed of the worktable, resulting in impact and vibration, affecting the service life of the machine tool, cutting tools, and the surface roughness of the workpiece. When using reverse milling, the cutting thickness increases from small to large, and the load on the cutting tool also increases from small to large, making the tool smoother during processing. Note that this is only used during precision machining. When performing rough machining, it is still necessary to use sequential milling because it has high productivity and ensures the service life of the tool

7. Reasonably use cutting fluid.

The reasonable use of cutting fluid with cooling effect as the main water solution has little effect on cutting force. Cutting oil mainly used for lubrication can significantly reduce cutting force. Due to its lubricating effect, it can reduce the friction between the front cutting surface of the tool and the chips, as well as between the rear cutting surface and the transition surface of the workpiece, thereby reducing the radial runout of the tool.

Practice has proven that as long as the precision of manufacturing and assembly of various parts of the machine tool is ensured, and reasonable processes and fixtures are selected, the impact of radial runout of the cutting tool on the machining accuracy of the workpiece can be minimized to the greatest extent possible.

keys: 
波多野结衣在线播放无码 | 台湾成人午夜福利电影 | 中东欧BBw视频 | 国产精品 国产三级 网址 | 777婷婷天堂综合 | 黄色视频网站在线播放 | 99久久国产黄色视频 | 无码国内精品久久人妻成年免费视频黄网 | 日本三级片在线观看 | 91国语对白爽死我了第30集 | 国产精品免费永久 | WWW.中文字幕| 午夜av一区二区亚洲 | 裸体女A片一区二区视频 | 亚洲国产精品成人视频网站 | 麻豆国产福利一区二区在线 | 成人黄色视频网站免费观看网址 | 性感狐不妖精品午夜日韩福利在线 | 亲亲草成人VA视屏 | 18禁网站禁片免费观看 | 高辣h欧美一二三区 | 性一交一A一Ⅴ一视一频 | 精品人妻一区二区三区日产乱码 | 欧美性受XXXX中国XYX性爽 | 色欧美视频在线观看 | 亚洲内射无码免费视频 | 黄色视频成人影片 | 少妇黃色A片三級三級三級 精品秘 无码一区二区久久 | 国产八区三区在线 | 丰满人妻老熟妇伦人精品 | 亚洲国产精品无码专区 | 国产激情婬妇A片在线观看妖精 | 成人三级视频在线观看密乳 | 特色BBBBBBBBB视频| 九九热思思AAAAAA | 放一个AA一级片 | 精品少妇高潮乱码久久久久 | 国产美女裸体无遮挡免费视频试看 | 日韩精品无码一区、二区 | 亚洲无码ppypp | 你懂的直接看网站 |